Factor 64x² + 3x - 61


Factoring Quadratics

Here we will show you how to factor the quadratic function 64x² + 3x - 61 using the box method. In other words, we will show you how to factor 64x squared plus 3x minus 61 (64x^2 + 3x - 61) using the box method. It is a 5-step process:

Step 1: The standard form of a quadratic equation is ax² + bx + c. We start by labeling the different parts of our equation 64x² + 3x - 61, like this:

a = 64
b = 3
c = -61


Step 2: Next, we need to draw a box and divide it into four squares:

-61  -61x -61
64x  64x² 64x
x 1
We put 64x² (a) in the bottom left square and -61 (c) in the top right square, like this:

-61  -61x -61
64x  64x² 64x
x 1
Step 3: In order to fill in the other two squares, we need to do some math. We have to find two numbers that multiply together to give us the product of 64 times -61 (a × c), and add together to equal 3 (b).

More specifically, 64 times -61 is -3904. Therefore, we need to find the two numbers that multiply to equal -3904, and add to equal 3.

? × ? = -3904
? + ? = 3

After looking at this problem, we can see that the two numbers that multiply together to equal -3904, and add together to equal 3, are -61 and 64, as illustrated here:

-61 × 64 = -3904
-61 + 64 = 3

Now, we can fill in the last two squares in our box with -61x and 64x. Place -61x in the upper left square, and place 64x in the lower right square.

-61  -61x -61
64x  64x² 64x
x 1
Step 4: Next, we need to find four final numbers to finish factoring our equation. We can see that our box is a 2 x 2 table made up of rows and columns.

Our goal is to find the numbers that, when multiplied together, result in the products in each square. We can do this by finding the greatest common factor in each row.

Let’s look at the top row. We have the terms -61x and -61. The greatest common factor of -61x and -61 is -61. Therefore, we write -61 to the left of the top row. You can see it here in the color green:

-61  -61x -61
64x  64x² 64x
x 1
Next, let’s look at the bottom row. We have the terms 64x² and 64x. The greatest common factor of 64x² and 64x is 64x. Therefore, we write 64x to the left of the bottom row. You can see it here in the color blue:

-61  -61x -61
64x  64x² 64x
x 1
To find the values below the table, we first divide 64x² by 64x (labeled in blue). This gives us x.

64x² ÷ 64x = x

You can see this value colored in orange below:

-61  -61x -61
64x  64x² 64x
x 1

Next, we divide 64x by 64x (labeled in blue). This gives us 1.

64x ÷ 64x = 1

You can see this value colored in purple below:

-61  -61x -61
64x  64x² 64x
x 1

Step 5: Now we have all of the information we need to finish factoring the equation. The values outside of the box are used to factor 64x² + 3x - 61. You simply put the values on the left in one set of parentheses, and the values below in another set of parentheses, to get the answer:

(64x - 61)(x + 1)

That’s it! Now you know how to factor the equation 64x² + 3x - 61.


Factoring Quadratics
Go here if you want to learn how to factor another quadratic function.

Factor 64x² + 4x - 95
Here is the next quadratic function on our list that we have factored for you.


Copyright  |   Privacy Policy  |   Disclaimer  |   Contact